Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2945, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600094

RESUMO

An inter-regional cortical tract is one of the most fundamental architectural motifs that integrates neural circuits to orchestrate and generate complex functions of the human brain. To understand the mechanistic significance of inter-regional projections on development of neural circuits, we investigated an in vitro neural tissue model for inter-regional connections, in which two cerebral organoids are connected with a bundle of reciprocally extended axons. The connected organoids produced more complex and intense oscillatory activity than conventional or directly fused cerebral organoids, suggesting the inter-organoid axonal connections enhance and support the complex network activity. In addition, optogenetic stimulation of the inter-organoid axon bundles could entrain the activity of the organoids and induce robust short-term plasticity of the macroscopic circuit. These results demonstrated that the projection axons could serve as a structural hub that boosts functionality of the organoid-circuits. This model could contribute to further investigation on development and functions of macroscopic neuronal circuits in vitro.


Assuntos
Axônios , Neurônios , Humanos , Axônios/fisiologia , Neurônios/fisiologia , Organoides/fisiologia , Encéfalo
2.
Front Bioeng Biotechnol ; 12: 1259138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347914

RESUMO

Motor nerve organoids could be generated by culturing a spheroid of motor neurons differentiated from human induced pluripotent stem (iPS) cells within a polydimethylsiloxane (PDMS) chip which guides direction and fasciculation of axons extended from the spheroid. To isolate axon bundles from motor nerve organoids, we developed a rapid laser dissection method based on localized photothermal combustion. By illuminating a blue laser on a black mark on the culture device using a dry-erase marker, we induced highly localized heating near the axon bundles. Moving the laser enabled spatial control over the local heating and severing of axon bundles. This laser dissection requires a black mark, as other colors did not produce the same localized heating effect. A CO2 laser destroyed the tissue and the device and could not be used. With this simple, economical laser dissection technique, we could rapidly collect abundant pure axon samples from motor nerve organoids for biochemical analysis. Extracted axonal proteins and RNA were indistinguishable from manual dissection. This method facilitates efficient axon isolation for further analyses.

3.
RNA ; 28(6): 895-904, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35256452

RESUMO

Mitochondria possess their own genome that encodes components of oxidative phosphorylation (OXPHOS) complexes, and mitochondrial ribosomes within the organelle translate the mRNAs expressed from the mitochondrial genome. Given the differential OXPHOS activity observed in diverse cell types, cell growth conditions, and other circumstances, cellular heterogeneity in mitochondrial translation can be expected. Although individual protein products translated in mitochondria have been monitored, the lack of techniques that address the variation in overall mitochondrial protein synthesis in cell populations poses analytic challenges. Here, we adapted mitochondrial-specific fluorescent noncanonical amino acid tagging (FUNCAT) for use with fluorescence-activated cell sorting (FACS) and developed mito-FUNCAT-FACS. The click chemistry-compatible methionine analog L-homopropargylglycine (HPG) enabled the metabolic labeling of newly synthesized proteins. In the presence of cytosolic translation inhibitors, HPG was selectively incorporated into mitochondrial nascent proteins and conjugated to fluorophores via the click reaction (mito-FUNCAT). The application of in situ mito-FUNCAT to flow cytometry allowed us to separate changes in net mitochondrial translation activity from those of the organelle mass and detect variations in mitochondrial translation in cancer cells. Our approach provides a useful methodology for examining mitochondrial protein synthesis in individual cells.


Assuntos
Aminoácidos , Biossíntese de Proteínas , Aminoácidos/química , Citometria de Fluxo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
4.
Surg Today ; 52(7): 1109-1114, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35018512

RESUMO

PURPOSE: At present, ≥ 20% of patients experience clinically relevant postoperative pancreatic fistula (POPF) after distal pancreatectomy (DP). METHODS: We developed a new bioabsorbable pancreatic clip (BioPaC) made of polycaprolactone that does not crush the pancreatic parenchyma during occlusion of the pancreatic stump. We confirmed the efficacy of this BioPac in a porcine DP model and compared it to a linear stapling device (Reinforce®). RESULTS: Pigs were killed at 1 month after DP. In the BioPaC group, all swine (n = 3) survived well without POPF. In the Reinforce® group (n = 2), one pig died early at postoperative day 7 with Grade C POPF (amylase 43 700 U/l), and the other survived until 1 month at scarification with biochemical leakage of POPF (amylase 3 725 U/l). Pathologically, the main pancreatic duct and pancreatic parenchyma were well closed by BioPaC. CONCLUSION: The newly developed BioPaC is effective in a porcine DP model.


Assuntos
Implantes Absorvíveis , Pancreatectomia , Amilases , Animais , Humanos , Fístula Pancreática/etiologia , Fístula Pancreática/prevenção & controle , Complicações Pós-Operatórias , Estudos Retrospectivos , Fatores de Risco , Instrumentos Cirúrgicos , Suínos
5.
Adv Exp Med Biol ; 1345: 241-252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34582027

RESUMO

The nervous system is an ensemble of organs that transmit and process external information and are responsible for the adaption to the external environment and homeostasis control of the internal environment. The nervous system of vertebrates is divided into the central nervous system (CNS) and peripheral nervous system (PNS) due to its structural features. The CNS, which includes the brain and the spinal cord, processes information from external stimuli and assembles orders suitable for these stimuli. The CNS then sends signals to control other organs/tissues. On the other hand, the PNS connects the CNS to other organs/tissues and functions as a signal pathway. Therefore, the decline and loss of various functions due to injuries of the nervous system cause an impaired quality of life (QOL) and eventually the termination of life activities. Here, we report mainly on decellularized neural tissue and its application as a substrate for the regeneration of the nervous system.


Assuntos
Tecido Nervoso , Qualidade de Vida , Animais , Sistema Nervoso Central , Regeneração Nervosa , Sistema Nervoso Periférico , Medula Espinal
6.
J Biosci Bioeng ; 132(1): 71-80, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33895082

RESUMO

Cryopreservation is important for enabling long-term cell preservation. However, physical damage due to ice crystal formation and membrane permeation by dimethyl sulfoxide (DMSO) severely affects cryopreserved cell viability. To ensure cell survival and functional maintenance after cryopreservation, it is important to protect the cell membrane, the most vulnerable cell component, from freeze-thaw damage. This study aimed to create a glycolipid derivative having a positive interaction with the cell membrane and cytoprotective effects. As a result, we synthesized a novel trehalose derivative, oleyl-trehalose (Oleyl-Treh), composed of trehalose and oleyl groups. Its use led to increased viable cell counts when used with DMSO in a non-cytotoxic concentration range (1.6 nM-16 µM). Oleyl-Treh significantly improved viability and liver-specific functions of hepatocytes after cryopreservation, including albumin secretion, ethoxyresorufin-O-deethylase activity (an indicator of cytochrome P450 family 1 subfamily A member 1 activity), and ammonia metabolism. Oleyl-Treh could localize trehalose to the cell membrane; furthermore, the oleyl group affected cell membrane fluidity and exerted cryoprotective effects. This novel cryoprotective agent, which shows a positive interaction with the cell membrane, provides a unique approach toward cell protection during cryopreservation.


Assuntos
Membrana Celular/efeitos dos fármacos , Criopreservação/métodos , Crioprotetores/química , Crioprotetores/farmacologia , Glicolipídeos/química , Trealose/química , Trealose/farmacologia , Animais , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos
7.
J Biosci Bioeng ; 132(1): 95-101, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33883072

RESUMO

Growth factors (GFs) are indispensable in regenerative medicine because of their high effectiveness. However, as GFs degenerate easily, the development of a suitable carrier with improved stability for GFs is necessary. In this study, we developed a gel-in-oil (G/O) emulsion technology for the transdermal delivery of growth factors. Nanogel particles prepared with heparin-immobilized gelatin that can bind growth factors were dispersed in isopropyl myristate. The particle size of the G/O emulsion could be controlled by changing the surfactant concentration, volume ratio of the water phase to the oil phase, and gelatin concentration. In vitro skin penetration studies showed better penetration through the stratum corneum of fluorescent proteins containing G/O emulsions than of the aqueous solution of GF. Similarly, an in vivo study showed an angiogenesis-inducing effect after transdermal application of GF-immobilized G/O emulsion. Angiogenesis in mice was confirmed owing to both an increased blood vessel network and higher hemoglobin content in the blood. Therefore, the G/O emulsion could be a promising carrier for GFs with better stability and can effectively deliver GFs at the target site.


Assuntos
Portadores de Fármacos/química , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/química , Óleos/química , Administração Cutânea , Animais , Emulsões , Gelatina/química , Géis , Camundongos , Miristatos/química , Tamanho da Partícula , Água/química
8.
J Biosci Bioeng ; 131(1): 107-113, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32948422

RESUMO

Liver transplantation plays an important role in the medical field. To improve the quality of a donor liver, there is a need to establish a preservation system to prevent damage and maintain liver function. In response to this demand, machine perfusion (MP) has been proposed as a new liver preservation method instead of the conventional static cold storage. There is controversy about the optimal MP temperature of the donor liver. Since the oxygen consumption of the liver differs depending on the temperature, construction of a system that satisfies the oxygen demand of the liver is crucial for optimizing the preservation temperature. In this study, an MP system, which satisfies the oxygen demand of liver at each temperature, was constructed using an index of oxygen supply; the overall volumetric oxygen transfer coefficient, the amount of oxygen retention of perfusate and oxygen saturation. Both subnormothermic MP (SNMP, 20-25 °C) and normothermic MP (NMP, 37 °C) could maintain liver viability at a high level (94%). However, lactate metabolism of the liver during NMP was more active than that during SNMP. Furthermore, the ammonia metabolism of liver after NMP was superior to that after SNMP. Hence, NMP, which maintains the metabolic activity of the liver, is more suitable for preservation of the donor liver than SNMP, which suppresses the metabolic activity. In summary, normothermia is the optimal temperature for liver preservation, and we succeeded in constructing an NMP system that could suppress liver damage and maintain function.


Assuntos
Fígado/fisiologia , Oxigênio/metabolismo , Perfusão/métodos , Temperatura , Humanos , Fígado/metabolismo , Transplante de Fígado , Doadores Vivos
9.
Int J Biol Macromol ; 151: 186-192, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32070734

RESUMO

Endothelization of a tissue-engineered substrate is important for its application as an artificial vascular graft. Despite recent advancements in artificial graft fabrication, a graft of <5 mm is difficult to fabricate owing to insufficient endothelization that results in thrombosis after transplantation. We aimed to perform a co-culture of adipose-derived mesenchymal stem cells (MSCs) with human umbilical vein endothelial cells (HUVECs) on antithrombogenic polycaprolactone (PCL)/heparin-gelatin co-spun nanofibers to evaluate the role of co-culturing in promoting quick endothelization of vascular substrates without surface modification by growth factors or other ECM proteins that trigger the endothelization process. Using a co-axial electrospinning technique, we attempted to fabricate our scaffold balancing between mechanical properties and biocompatibility. Antithrombogenic characteristics were then imparted to the fabricated nanofiber substrate by grafting of heparin. Finally, we performed a co-culture of MSCs and HUVECs on the fabricated co-spun nanofiber substrate to obtain proper endothelization of our material under the in-vitro culture. Staining for CD-31 at seven days of culture revealed enhanced CD-31 expression under the co-culture condition; actin staining revealed healthy cobblestone HUVEC morphology, suggesting that MSCs can aid in proper endothelization. Hence, we conclude that co-culture is effective for quick endothelization of vascular substrates.


Assuntos
Gelatina , Heparina , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células-Tronco Mesenquimais/citologia , Nanofibras , Poliésteres , Tecidos Suporte/química , Diferenciação Celular , Técnicas de Cocultura , Citoesqueleto/química , Citoesqueleto/metabolismo , Endotélio , Imunofluorescência , Gelatina/química , Heparina/química , Humanos , Nanofibras/química , Nanofibras/ultraestrutura , Poliésteres/química , Engenharia Tecidual
10.
J Biosci Bioeng ; 129(3): 354-362, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31601468

RESUMO

Aligned fibers have been used as a scaffold of nerve guidance conduit owing to their guiding function of neural cells for peripheral nerve regeneration. However, the recovery performance of nerve guidance conduits using aligned fibrous scaffold is insufficient, and further improvements in scaffold function is required for promoting regeneration. In this study, we developed aligned heparin-conjugated fibers and supplied a biological signal to neural cells by the growth factors immobilized through heparin. Results indicated that neural model cells (PC12 cells) were cultured well on the scaffold without inhibiting cell adhesion by heparin conjugation and exhibited more vigorous cell proliferation than in a heparin-free condition. The cells extended their neurites along the fiber direction. Furthermore, PC12 cells on the heparin-conjugated fibrous scaffold pre-exposed to a nerve growth factor solution sprouted more neurites compared to those of heparin-free condition. These results verified that our scaffold exhibited high biocompatibility to neural cells and could maintain an effective local concentration of growth factors on the scaffold surface. Therefore, aligned heparin-conjugated fibers are promising scaffolds of nerve guidance conduits for promoting peripheral nerve regeneration by the combinatorial effect of topological and biological signals.


Assuntos
Nanofibras , Fator de Crescimento Neural/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Neurônios/citologia , Animais , Heparina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Ratos
11.
Regen Ther ; 15: 173-179, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33426216

RESUMO

INTRODUCTION: Cells have various applications in biomedical research. Cryopreservation is a cell-preservation technique that provides cells for such applications. After cryopreservation, sensitive cells, such as primary hepatocytes, suffer from low viability due to the physical damage caused by ice crystals, highlighting the need for better methods of cryopreservation to improve cell viability. Given the importance of effectively suppressing ice crystal formation to protect cellular structure, trehalose has attracted attention as cryoprotectant based on its ability to inhibit ice crystal formation; however, trehalose induces osmotic stress. Therefore, to establish a cell-cryopreservation technique, it is necessary to provide an optimal balance between the protective and damaging effects of trehalose. METHODS: In this study, we evaluated the effects of osmotic stress and ice crystal formation on the viability and function of primary rat hepatocytes at wide range of trehalose concentration. RESULTS: There was no osmotic stress at very low concentrations (2.6 µM) of trehalose, and 2.6 µM trehalose drives the formation of finer ice crystals, which are less damaging to the cell membrane. Furthermore, we found that the number of viable hepatocytes after cryopreservation were 70% higher under the 2.6 µM trehalose-supplemented conditions than under the dimethyl sulfoxide-supplemented conditions. Moreover, non-cryopreserved cells and cells cryopreserved with trehalose showed comparable intracellular dehydrogenase activity. CONCLUSIONS: We showed that trehalose at very low concentrations (2.6 µM) improved dramatically viability and liver function of hepatocyte after cryopreservation.

12.
Regen Ther ; 15: 236-242, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33426224

RESUMO

INTRODUCTION: Growth factors are crucial bioactive molecules in vitro and in vivo. Among them, basic fibroblast growth factor (bFGF) has been used widely for various applications such as cell culture and regenerative medicine. However, bFGF has extremely poor stability in aqueous solution; thus, it is difficult to maintain its high local concentration. Heparin-conjugated materials have been studied recently as promising scaffold-immobilizing growth factors for biological and medical applications. The previous studies have focused on the local concentration maintenance and sustained release of the growth factors from the scaffold. METHODS: In this paper, we focused on the biological stability of bFGF immobilized on the heparin-conjugated collagen (hep-col) scaffold. The stability of the immobilized bFGF was quantitatively evaluated at physiological temperature (37 °C) using cell culture and ELISA. RESULTS: The immobilized bFGF had twice higher stability than the bFGF solution. Furthermore, the hep-col scaffold was able to immobilize not only bFGF but also other growth factors (i.e., vascular endothelial growth factor and hepatocyte growth factor) at high efficiency. CONCLUSIONS: The hep-col scaffold can localize several kinds of growth factors as well as stabilize bFGF under physiological temperature and is a promising potent scaffold for regenerative medicine.

13.
J Funct Biomater ; 10(2)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052349

RESUMO

Accurate determination of the amount of glycosaminoglycans (GAGs) in a complex mixture of extracellular matrix (ECM) is important for tissue morphogenesis and homeostasis. The aim of the present study was to investigate an accurate, simple and sensitive alcian blue (AB) method for quantifying heparin in biological samples. A method for analyzing heparin was developed and parameters such as volume, precipitation time, solvent component, and solubility time were evaluated. The AB dye and heparin samples were allowed to react at 4 ℃ for 24 h. The heparin-AB complex was dissolved in 25 N NaOH and 2-Aminoethanol (1:24 v/v). The optical density of the solution was analyzed by UV-Vis spectrometry at 620 nm. The modified AB method was validated in accordance with U.S. Food and Drug Administration guidelines. The limit of detection was found to be 2.95 µg/mL. Intraday and interday precision ranged between 2.14-4.83% and 3.16-7.02% (n = 9), respectively. Overall recovery for three concentration levels varied between 97 ± 3.5%, confirming good accuracy. In addition, this study has discovered the interdisciplinary nature of protein detection using the AB method. The basis for this investigation was that the fibrous protein inhibits heparin-AB complex whereas globular protein does not. Further, we measured the content of sulfated GAGs (sGAGs; expressed as heparin equivalent) in the ECM of decellularized porcine liver. In conclusion, the AB method may be used for the quantitative analysis of heparin in ECM scaffolds for tissue engineering applications.

14.
J Biosci Bioeng ; 124(4): 430-438, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28669529

RESUMO

Two-dimensional monolayer culture is the most popular cell culture method. However, the cells may not respond as they do in vivo because the culture conditions are different from in vivo conditions. However, hydrogel-embedding culture, which cultures cells in a biocompatible culture substrate, can produce in vivo-like cell responses, but in situ evaluation of cells in a gel is difficult. In this study, we realized an in vivo-like environment in vitro to produce cell responses similar to those in vivo and established an in situ evaluation system for hydrogel-embedded cell responses. The extracellular matrix (ECM)-modeled gel consisted of collagen and heparin (Hep-col) to mimic an in vivo-like environment. The Hep-col gel could immobilize growth factors, which is important for ECM functions. Neural stem/progenitor cells cultured in the Hep-col gel grew and differentiated more actively than in collagen, indicating an in vivo-like environment in the Hep-col gel. Second, a thin-layered gel culture system was developed to realize in situ evaluation of the gel-embedded cells. Cells in a 200-µm-thick gel could be evaluated clearly by a phase-contrast microscope and immunofluorescence staining through reduced optical and diffusional effects. Finally, we found that the neural cells cultured in this system had synaptic connections and neuronal action potentials by immunofluorescence staining and Ca2+ imaging. In conclusion, this culture method may be a valuable evaluation system for neurotoxicity testing.


Assuntos
Técnicas de Cultura de Células/métodos , Matriz Extracelular/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Potenciais de Ação , Animais , Diferenciação Celular/efeitos dos fármacos , Colágeno/metabolismo , Heparina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células PC12 , Ratos , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...